Plant for superconductive magnetic energy storage, electrolytic water decomposition and generation of current by synthesizing water, comprises a superconducting magnetic energy storage system, a water-electrolyzer and a fuel cell

Anlage zur supraleitenden magnetischen Energiespeicherung, elektrolytischen Wasserzerlegung und wassersynthetisierenden Stromerzeugung

Abstract

Eine Anlage zur supraleitenden magnetischen Energiespeicherung, elektrolytischen Wasserzerlegung und wassersynthetisierenden Stromerzeugung besteht aus einem bei der druckabhängigen Siedetemperatur des LH 2 betriebenen, supraleitenden magnetischen Energiespeicher, SMES, aus mindestens einer Magnetspule in einem Kryotank, einem Wasser-, H 2 O-, Elektrolyseur zur Erzeugung von gasförmigem Wasser-, GH 2 , und gasförmigem Sauerstoff, GO 2 , einer Brennstoffzelle zur Erzeugung elektrischer Energie mittels H 2 O-Synthese, einer elektrischen Umrichtereinheit, einem H 2 -Verflüssiger, in dem vom H 2 O-Elektrolyseur eingeleiteter GH 2 zu Flüssigwasserstoff, LH 2 ; verflüssigbar ist, einer GH 2 -Verrohrung von der H 2 -Elektrode des Elektrolyseurs zum H 2 -Verflüssiger mit GH 2 -Entnahme und einer GO 2 -Rohrleitung von der O 2 -Elektrode zur O 2 -Elektrode der Brennstoffzelle mit GO 2 -Entnahme, einer LH 2 -Verrohrung von dem H 2 -Verflüssiger für den LH 2 -Zulauf zu einem in dem Kryotank sitzenden, den SMES umgebenden, mindestens einkammerigen LH 2 -Tank und dem LH 2 -Rücklauf von dort zum H 2 -Verflüssiger. Mit der Umrichtereinheit ist der H 2 O-Elektrolyseur betreibbar, die elektrische Energie von der Brennstoffzelle einspeisbar und der SMES auf- oder abmagnetisierbar.
The plant for superconductive magnetic energy storage, electrolytic water decomposition and generation of current by synthesizing water, comprises a superconducting magnetic energy storage (SMES) system consisting of solenoid coils in a cryotank operated with boiling temperature of the liquid hydrogen (LH 2), a water-electrolyzer for producing gaseous water, gaseous hydrogen (GH 2) and gaseous oxygen (GO 2), a fuel cell for producing electricity by hydrogen synthesis, an electrical converter, with which the water-electrolyzer is operatable and the energy from the fuel cell is feedable. The plant for superconductive magnetic energy storage, electrolytic water decomposition and generation of current by synthesizing water, comprises a superconducting magnetic energy storage (SMES) system consisting of solenoid coils in a cryotank operated with the boiling temperature of the liquid hydrogen (LH 2), a water-electrolyzer for producing gaseous water, gaseous hydrogen (GH 2) and gaseous oxygen (GO 2), a fuel cell for producing electricity by hydrogen synthesis, an electrical converter, with which the water-electrolyzer is operatable and the energy from the fuel cell is feedable and over which the SMES system is demagnetizable or remagnetizable, and a hydrogen-condenser, in which GH 2from the hydrogen-electrolyzer is liquefiable to LH 2. The water-electrolyzer and the fuel cell form an individual building group concerning hydrogen-electrode and oxygen-electrode and are operated by water-electrolysis or water-synthesis process, or are separately operable building groups with the hydrogen-electrode and the oxygen-electrode. The plant has a GH 2-piping from the hydrogen-electrode to the hydrogen-condenser with GH 2-withdrawal, a GO 2-piping from the oxygen-electrode to the oxygen-electrode of the fuel cell with GO 2-withdrawal, and a LH 2-piping of the hydrogen-condenser for a LH 2-inlet to one-chamber LH 2-tank and the LH 2-return pipe from the LH 2-piping to the hydrogen-condenser fitted in the cryotank surrounding the SMES system. The LH 2-inlet flows into a first LH 2chamber directly surrounding the SMES system. A discharge line is led out from the cryotank in the one-chamber LH 2tank by the LH 2return pipe. An overflow pipe in the LH 2chamber is passed into the multi-chamber LH 2-tank. The LH 2-discharge line is led out from the last LH 2-chamber. An oxygen-condenser is implemented into the GO 2-inlet from the electrolyzer to the oxygen consuming electrode of the fuel cell. A liquid oxygen (LO 2) condenser from the oxygen-condenser is placed to one-chamber LO 2-tank, which surrounds the LH 2-tank. The LO 2-piping is placed with the LH 2-piping. A LO 2-cross-flowable pipeline from the oxygen-condenser passes through the hydrogen-condenser. A water-supply line from a water-tank, which acts as buffer and is connectable to a water-network, is passed to the electrolyzer, and a water-discharge line is passed to the water-tank. The coil axes of the solenoid coils lie on a common axis. The solenoid coils are similar and placed on a circle in a common plane in bleach-distributed manner. The middle planes of the solenoid coils are electrically connected with one another in row in normally conducting manner or superconducting manner. A further solenoid coil with its middle plane lies in the common plane and is placed in the center of the circle. The hydrogen-condenser has a magneto-caloric cooling stage operated in the magnetic field of the SMES system. The magneto-caloric cooling stage consists of a cross-flowable heating device, which consists of magnetic materials, and a disk-shaped rotor, on which the heating device is mounted, so that the magnetic materials are rotatable on a circular path from weak into strong magnetic field region of the SMES system or from strong into weak magnetic field region of the SMES system. The magnetic materials increase the respective Curie temperature from the cold end to the hot end of the heating device. The Curie temperature lies between the boiling temperature of the LO 2and the LH 2. The magnetic materials pass through a magneto-caloric cyclic process around its Curie-temperature. A disk-shaped direct current motor is used for electrically driving magneto-caloric cooling stage. The rotor consists of radially arranged conductor segments, by which a current from a power source is supplied over a first sliding contact arranged radially on the outside and is discharged over a second sliding contact arranged radially on the inner-side. A stator consists of equal number of radially arranged conductor segments, by which a current from the rotor is supplied over the second sliding contact and is led back to the power source. Magnetic field produced from the magnets of the SMES system penetrates the plane of the disk-shaped rotor and the disk-shaped stator. The rotor is drivable by the magnets. The electrolyte for the electrolyzer and for the fuel cell is an aqueous alkali-solution. The electrolyzer is close to the SMES system, so that the magnetic field (B) produced in the SMES system penetrates the two electrolysis electrodes. A force per length of F e I ex B in the electrolytes exists in interaction with the transport current (I e) in the electrolyzer. The force in the electrolytes impels micro-currents in the electrolytes. The micro-currents support the evacuation of GH 2and GO 2. The fuel cell is close to the SMES system, so that the magnetic field (B) produced in the SMES system penetrates the two synthesis electrodes. A force per length of F b I bx B in the fuel cell exists in interaction with the transport current (I b) in the fuel cell. The force in the fuel cell impels micro-currents in the electrolytes. The micro-currents support the transportation of GH 2and GO 2.

Claims

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (2)

    Publication numberPublication dateAssigneeTitle
    DE-4440013-C1March 07, 1996Karlsruhe ForschzentModulator zur Erzeugung eines elektrischen Pulses hoher Leistung
    EP-0472922-A2March 04, 1992Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V.Procédé pour l'emmagasinage et le stockage d'énergie dans une pile à combustible régénérable avec membrane d'échange d'ions

NO-Patent Citations (5)

    Title
    "Design of a 150 kJ High-Tc SMES (HSMES) for a 20 kVA Uninterruptible Power Supply System" von Heinrich Salbert et al. in IEEE Transactions an applied superconductivity, Vol. 13, No. 2, June 2003
    "Die Brennstoffzelle", 13 Seiten, von M. Weiss
    "Europas erster Supraleitender Magnetischre Energiespeicher im Demonstrationsbetrieb" von Peter Sperling 19. Aug. 1997
    http://en.wikipedia.org/wiki/Magnetic_refrigeration
    http://www.ag-solar.de/de/themen/projekt.asp?uc=7&ID=325

Cited By (7)

    Publication numberPublication dateAssigneeTitle
    DE-102011013577-A1September 13, 2012Karlsruher Institut für TechnologieVorrichtung zur Speicherung von Wasserstoff und von magnetischer Energie sowie ein Verfahren zu ihrem Betrieb
    DE-102011013577-B4February 28, 2013Karlsruher Institut für TechnologieVorrichtung zur Speicherung von Wasserstoff und von magnetischer Energie sowie ein Verfahren zu ihrem Betrieb
    ES-2401016-A1April 16, 2013Andrés GINÉS GÓMEZDispositivo para la producción de energía eléctrica a partir de agua y procedimiento asociado.
    US-2014000288-A1January 02, 2014Karlsruhe Institut Fuer TechnologieApparatus for storing hydrogen and magnetic energy and a method for the operation of said apparatus
    WO-2012069342-A1May 31, 2012Shell Internationale Research Maatschappij B.V.Procédé de production d'hydrogène liquide et d'électricité
    WO-2012119757-A1September 13, 2012Karlsruher Institut für TechnologieApparatus for storing hydrogen and magnetic energy and a method for the operation of said apparatus
    WO-2012169902-A1December 13, 2012Hydrogenpartner AsSystème d'alimentation en électricité